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AFIT/GA/ENY/06-02 

Abstract 

The transient heating and cooling responses of graphitized carbon foam infiltrated 

with phase change material (PCM) are studied, including thermal cycling, analytical 

modeling, contact resistance, and the temperature gradient through the infiltrated foam. 

Infiltrating carbon foam with PCM creates an effective thermal energy storage 

device (TESD).  The high thermal conductivity of the graphite ligaments in the foam 

allows rapid transfer of heat throughout the PCM volume.  The PCM, chosen for its high 

heat capacity and high heat of fusion, stores the heat for later removal.  The PCM is able 

to absorb a significant amount of heat without a significant increase in temperature 

during phase change.  Three different types of carbon foam were selected for this study, 

and a fully-refined paraffin wax was chosen for the PCM. 

Experimental samples of foam and PCM were heated on a temperature-controlled 

heater block from room temperature through phase change and to steady-state.  Heat was 

then removed using a liquid-cooled cooling block.  A data acquisition unit recorded 

temperatures throughout the experimental sample, the heater, and cooler every four 

seconds. 

The heating and cooling responses were modeled using an exponential function.  

The results show a decrease in the temperature rate of change during melting and 

solidifying of the PCM.  Multiple cycles of heating and cooling the sample produced 

consistent responses.
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GRAPHITIZED CARBON FOAM  
WITH PHASE CHANGE MATERIAL 

 
 

I.  Introduction 

Background 

 

Phase change materials (PCM) are useful in storing thermal energy output from 

various heat sources.  However, a volume of phase change material alone may be slow in 

absorbing the heat and will melt first from the face in contact with the heat source.  By 

infiltrating the phase change material into a carbon foam, the heat is carried throughout 

the entire phase change material volume.  The high thermal conductivity of the ligaments 

of the foam allows the foam to rapidly carry heat from the heater to the phase change 

material for storage.  This type of thermal energy storage device is a solution to prevent 

overheating of components caused by short-term or cyclical inputs such as certain 

electronic devices or the sun. 

Phase change materials store heat by using thermal energy to change phase, while 

maintaining a constant temperature.   The higher the heat of fusion, the more thermal 

energy the PCM can absorb.  The phase change materials of interest in this project are 

ones that melt from solid to liquid during phase change at a temperature similar to the 

operating temperature of many electrical components, usually between 50-100ºC.   

While phase change materials offer an excellent source of thermal storage, their 

typically low thermal conductivities make them less effective as heat sinks.  Engineers 
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have devised several ways to disperse heat more evenly throughout the PCM.  One 

method is to use fins made of thermally conductive material that protrudes into the 

volume of PCM.  Another method is to create PCM filled-chambers of thermally 

conductive material.  The method under research in this thesis is infiltrating the PCM into 

a thermally-conductive porous material.   

Graphitized carbon foam is an option for such a porous material.  Graphite has a 

high thermal conductivity of up to 1800 W/mK at room temperature, which makes it 

useful in heat transfer.  The bulk thermal conductivity for the foam is lower than the 

conductivity of the graphite in its ligaments, but is still very high with conductivities up 

to 180 W/mK.  It can be made with varying degrees of density and porosity.  The 

characteristic of porosity is determined by pore size and pores per inch.  It is easily 

infiltrated by various phase change materials.  Graphitized carbon foam is somewhat 

lighter than aluminum foam and significantly lighter than copper foam, making it a 

desirable selection among foams.  Graphitized carbon foam is very easy to shape, bond to 

other materials, and infiltrate with various substances, further enhancing its utility in a 

TESD. 

A factor that affects a TESD’s ability to remove heat is the contact resistance 

between itself and the heater.  Contact resistance is resistance to heat flow through the 

joint where two surfaces meet.  Contact resistance is caused by roughness on the surfaces 

in contact.  Particles on a rough surface will be separated from the particles on the 

contacting surface.  Smoother surfaces will cause a lower contact resistance because 

more of their particles will be in contact with particles of the other surface, allowing 
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better conduction.  Applying pressure will give the surfaces a more complete contact, 

reducing contact resistance.  Contact resistance is difficult to estimate because every 

surface, even those made of the same substance, may have different surface texture 

characteristics.  Flaws and debris may further affect contact resistance.  An effective way 

to estimate contact resistance is to determine it experimentally. 

The lumped parameter method of characterizing heat storage and removal in a 

TESD means that spatial variations in temperature are ignored and the temperature 

response is solely a function of time (1:229).  This means that the temperature throughout 

the TESD is assumed to be equal.  It also assumes that the temperature of the foam, 

foam/PCM interface and PCM are all equal.  Since the pore sizes of the foams used in 

this experiment are small, this assumption should be valid.  The larger the pore sizes, the 

greater the difference in temperature between the foam and the PCM in the center of each 

pore, primarily during the time when the foam has reached the PCM’s melting 

temperature and the PCM has not yet melted completely.   

 

Problem Statement 

 

Previous work on this subject has shown that carbon foam infiltrated with phase 

change material is an effective way to remove heat from a source and provide storage 

until removal (9:2).   This experiment adds to those findings by considering the cooling 

response and the cycling of the system.  A comparison of the heating and cooling 
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responses of each period will show whether the response is consistent after being cycled 

repeatedly. 

 

Hypotheses 

 

The cooling response of a TESD should show an exponential temperature decay 

in cooling, with a more constant rate of temperature decay near the solidification 

temperature.  During phase change, the temperature will not completely plateau because 

the temperature of the foam will continue to decrease while the PCM is solidifying.  Also 

the paraffin does not change from fully melted to fully solid at the solidification point.  It 

has a period of hardening over a range of temperatures. 

The lumped-parameter method of characterizing the temperature response will not 

reflect the temperature gradient within the TESD.  The longer the path through which 

heat must travel, the greater the gradient will be because of the thermal resistance of the 

material.  Equation (1) shows this concept using an equation for the heat conduction 

through a wall (2:397).  The thermal conductivity of the graphite foam is not high enough 

to assume isothermal heating throughout the TESD.  

 

LΔT = Q
kA

            (1)  

ΔT = temperature difference between two points 

Q = heat into system 
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L = path length between two points 

k = thermal conductivity 

A = surface area through which heat is transferred 

 

With selection of paraffin as the PCM, the TESD should be able to undergo 

cycling without degradation of performance.  Paraffin has a high reliability in repeated 

changes of phase (3:5-5).  The failure in the TESD’s ability to be cycled will lie in the 

container enclosing the foam and PCM.  Whether the container can withstand the 

pressure of the repeated volume expansion during heating and the shrinking during 

solidification will determine whether the TESD can be cycled.  

Methodology 

 

 Experimental samples of a TESD were fabricated from graphitized carbon foam 

infiltrated with the phase change material.  The foam and PCM were enclosed in an 

acrylic tube and the bottom face was bonded with an aluminum face sheet.  

Thermocouples were inserted at various locations to measure temperature throughout the 

sample. 

The phase change material chosen for these experiments was highly refined 

paraffin.  Paraffin is readily available at a low cost.  It is so safe that it can be ingested.  It 

has a melting temperature of 61ºC, which is within the range of interest.  The major 

drawback of paraffin is its high thermal expansion.  Experiments show its volume 

increases about 20% when it melts, which is higher than many other types of PCM.  The 

5 



 

specific heat capacity for solid paraffin is about 2.93 J/gK and 2.97 J/gK for liquid 

paraffin.  The heat of fusion of paraffin is about 146 J/g (3:5-19).  This is a measure of 

the heat input required to melt a substance, which is equal to the heat given off during 

solidification of the substance.   

Three different types of graphitized carbon foam were used in these experiments.  

Foams were chosen primarily on availability.  One foam was a high density foam 

manufactured by MER Corp.  The second foam was a low density foam, also from MER.  

The third foam was a high density foam manufactured by Poco.  Table 2 shows the 

density and estimated bulk thermal conductivities of the foams.  The density was 

determined experimentally, and the thermal conductivity was given by the manufacturers. 

 

Table 1: Foam Characteristics 

Foam Type 

Density 

g/cm^3 

Estimated Bulk Thermal 

Conductivity (W/mK) 

MER high density 0.49 1-180 

MER low density 0.16 0.1-50 

POCO 0.53 135 

 

 

Figures 1, 2, and 3 show photographs of the foams used in this study.  Each photo 

is to the same scale.  The different pore sizes of the foams are visible.  The low density 

MER foam shown in Figure 2 has the largest pores and the POCO foam shown in Figure 
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1 has the smallest pores.  This corresponds with the densities of the foams shown in 

Table 1.  

 

 

Figure 1:  Photograph of Poco Foam 

 

 

Figure 2:  Photograph of Low Density MER Foam 

 

 

Figure 3:  Photograph of High Density MER Foam 
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Assumptions/Limitations 

 

Several key assumptions were made in the analysis of the foam/PCM system.  

First is the assumption of one-dimensional heat flow.  This means that the heat from the 

heater block will move up the length of the TESD evenly throughout the cross-section of 

the block.  The specific heat of the paraffin was assumed to be constant in the solid and 

liquid phase.  It differed by only 0.04 J/gK over the phase change, so this assumption 

allowed accurate models. 

 

8 



 

II. Literature Review 

 

Previous Studies 

 

Various studies have been conducted using phase change materials infiltrated into 

porous materials.  Studies have evaluated feasibility of such systems for heat removal and 

storage.  Some studies have characterized various aspects of the heating and cooling of 

the system. 

A lumped parameter method may be used to estimate the temperature in the 

TESD (9:4).  The maximum temperature difference within a 5.6cm x 3.8cm x 2.5cm 

block was measured to be less than 20%.  Embedding PCM into a metal matrix has been 

shown to improve its ability to function as a heat sink.  The matrix was able to spread the 

heat throughout the PCM, allowing it to absorb more heat than PCM alone.  The matrix 

material should be vacuum brazed to the surface to improve performance by reducing the 

resistance from the heater to the heat sink (7:9).  The carbon foam allows for the volume 

expansion of the PCM during phase change.  The shrinking of the PCM during cooling 

degrades thermal performance due to the reduced surface area contact between the PCM 

and the foam (10:8). 
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Phase Change Materials 

 

When developing a container to hold a PCM, volume expansion during melting 

must be considered.  Unless the container is perfectly sealed while under a vacuum, the 

voids in the foam will contain gas.  Because of the volume increase of the PCM in its 

molten state, pressure within the container will build as it melts.  A large enough void 

must be maintained in the container to allow for expansion of the PCM while allowing 

the gas in the voids to remain at a safe pressure to prevent the container from bursting 

(3:8-41). 

Some of the factors that make a particular phase change material desirable include 

its thermal and physical properties.  The PCM should have a high heat of fusion in order 

to store more heat energy.  Reliable and consistent phase change is also desirable in order 

to ensure the system can be cycled.  A PCM with low volume expansion during melting 

would help prevent failure due to pressure buildup in a sealed container.  A PCM would 

preferably have a high thermal conductivity to allow less of a gradient within the volume.  

However, this factor can be negated by embedding thermally conductive particles within 

the PCM or infiltrating the PCM into a thermally conductive matrix (3:8-2). 

Paraffin is a sensible choice of PCM for this experiment.  Paraffin has a high heat 

of fusion of 146 J/g.  Heats of fusion for typical PCMs can range from less than 100 to 

over 300 J/g.  Although it has a very low thermal conductivity of approximately 0.2 

W/mK, infiltrating it into the carbon foam creates a high effective conductivity 

throughout the combined volume.  Its high wetting ability is a useful characteristic for 
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infiltration into the foam. Paraffin has been shown to be reliable and predictable in 

repeated changes of phase (3:5-5). 

 

Graphite foam 

 

 Graphite foam can effectively increase the thermal conductivity through a volume 

of embedded paraffin.  The foam’s open structure, thermal conductivity, porosity, and 

other characteristics make it useful for such a purpose.  The process of manufacturing the 

foam begins with filling a mold with pitch and then heating it under high pressure to 

produce a foam.  After the foam is cooled and trimmed, it is heated again for several 

days, during which the foam becomes carbonized.  Lastly, it is heated at even higher 

temperatures until it becomes graphitized (5:4).  Foams produced from pitch have highly 

aligned ligaments, which increase the thermal conductivity throughout the foam (5:12).   

 The open porosity of the foam allows it to be infiltrated by liquids, including 

molten PCM.  The percentage of open porosity is estimated to be up to 98% of total 

porosity (4:1).  The foams can be produced with ranges in pore size from 30-1270 μm.  

The foams with larger pore sizes will typically have fewer pores per inch (ppi), and the 

ppi can range from 20-600.  The more porous foams will have lower densities, as low as 

0.016 g/cc and can be as dense as 0.62 g/cc (6:1). 
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III.  Methodology 

 

Thermal Energy Storage Device Overview 

 

The thermal energy storage device (TESD) was designed to store heat for later 

removal.  Each experimental thermal energy storage device used in this study was made 

from a tall rectangular section of carbon foam infiltrated with paraffin wax.  The sides 

were encased in a square acrylic tube.  The bottom face of the TESD was bonded with an 

aluminum sheet and the top face was left open to allow for expansion of the PCM and the 

gas trapped within the voids.  The bottom edge of the TESD was sealed with epoxy to 

prevent leakage of the melted PCM.   

 

  

Figure 4: Photograph of TESD 
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Type T copper and constantan thermocouples were used to measure the 

temperature at different locations within the TESD.  The thermocouples were inserted 

normal to a single face of the TESD in a diagonal pattern as shown in Figure 5.  The 

diagonal pattern was necessary to ensure the thermocouple at one location would not 

interfere with the response at the location above it.  The thermocouple location located 

nearest the heater was labeled “Site 6” and the one farthest from the heater was labeled 

“Site 1.” 

 

 

1 in

0.88 in

0.0625 in 

1.5 in  
0.25 in

0.125 in

Site 1 

Site 2 

Site 3 
Site 4 

Site 5 

Site 6 

Front View Top View 

0.44 in

 

Figure 5:  Thermocouple Locations 
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TESD Construction 

 

A thin aluminum sheet served as the interface between the TESD and the heater.  

The primary function of the sheet is to keep the molten PCM from seeping out of the 

open pores.  It must provide minimal thermal resistance, and so must be smooth, thin, and 

thermally conductive in plane perpendicular to the heater surface.  The aluminum sheet 

fulfilled all these requirements.  It is a foil 0.025 mm thick, similar to the wall of a soda 

can. 

Arctic Silver® brand thermal epoxy provided a sturdy bond between the foam and 

the aluminum sheet.  It has a thermal conductivity of over 7.5 W/mK, which is higher 

than many thermal epoxies on the market.  Arctic Silver epoxy is easy to work with and 

cures at room temperature. 

Each TESD was constructed in the following way.  The foam was cut to size, 

rinsed to remove any graphite dust, and dried.  After the foam was completely dry, the 

thin aluminum sheet was bonded to the foam.  The epoxy was spread on the surface of 

the foam and worked into the voids with a spatula.  The epoxy was also spread directly 

on to the aluminum sheet in order to ensure a good bond on both surfaces.  After mating 

both surfaces, the epoxy was cured overnight at room temperature.     

During the bonding process, the outermost pores of the foam were filled with 

epoxy.  The deepest epoxy-filled void measured 0.078cm, and the thinnest layer of epoxy 

measured 0.013cm.  The bond was strong enough to cause the foam to fail when the 
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aluminum was peeled away from the surface. Figure 6 shows a close up of the aluminum 

sheet bonded to the foam. 

 

 

 Figure 6: Bond between Foam and Aluminum 

 

 

PCM infiltration into the foam was accomplished in a vacuum oven.  The foam 

was placed in melted PCM and placed in the oven, and a vacuum was drawn to allow the 

PCM to flow into the foam voids previously filled with air.   

The percentage of infiltration of PCM into the foam was determined by measuring 

the volume of the foam and the mass before infiltration, and measuring the mass after 

infiltration.  The difference in the masses equals the mass of the PCM in the foam.  The 

volume of PCM can easily be calculated from the density and the mass.  The ratio of the 

PCM volume to the foam volume gives the percentage of infiltration. 
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Table 2: Mass and Infiltration Percentage 

Foam Type TESD Mass Before 
Infiltration (g) 

PCM Mass (g) % Infiltration 

MER HD 9.45 11.53 66 

MER LD 3.44 13.16 74 

POCO 10.40 11.22 64 

 

 

Test Setup 

 

 The test setup, shown in Figure 7, consists of a heater block, a cooling block, a 

pneumatic press, a data acquisition unit (DAU), and a computer.  The heater block is 

made of copper with dimensions 5.6cm x 3.8cm.  It has embedded thermocouples to 

provide temperature feedback to the computer and DAU.  The cooling block has 

polyalphaolefin aircraft coolant running through it.  It is mounted on a press controlled by 

pneumatics that slowly lowers it onto the TESD and applies a constant amount of 

pressure. 
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Coolant in Coolant out 

Copper Heater 
Block 

Cooling 
Block 

Pneumatic  
Lift 

Experimental 
TESD 

 

Figure 7: Test Setup Concept 

 

 The computer software controls both the heater and the cooler.  It uses a non-

linear feedback control system to regulate the temperature of the heater.  The user inputs 

the desired heater temperature, cold bath temperature, and other parameters.   

 The data acquisition unit takes measurements of various parameters and records 

them approximately every four seconds.  It records the temperature at the six 
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thermocouple locations within the block, the temperature of the heater, the temperature of 

the coolant, power out of the heater, and other parameters. 

 

Test Procedure 

 

 The test procedure began with applying the phase change grease to both the 

surface of the heater and the TESD.  Refer to Figure 7 for the test setup.  The grease was 

intended to reduce contact resistance by filling the voids between the two surfaces.   

 Heater temperature was set to 75ºC cold bath temperature was set to 15ºC via the 

computer.  Once the heater reached the desired temperature, the TESD was placed on the 

heater block.  The insulating block was immediately placed on top of the TESD and then 

the press was dropped to hold the system in place. 

 Once the TESD remained on the heater for the desired amount of time, the press 

was lifted and the insulating block was placed between the TESD and the heater.  The 

press was again lowered, placing the cooling block in contact with the upper TESD 

surface. 

 

Limitations 

 

The test setup was unable to keep the temperature of the heater constant.  Once 

the TESD was placed in contact with the heater block, the temperature of the block 

dropped by up to 2ºC and took up to 3 minutes to return to the set temperature.  The 
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19 

copper heater block had a large thermal mass, so it took a significant amount of time to 

respond to inputs from the control system.  The DAU only measured the data once every 

four seconds, so there was a slow response time for the control system to adjust variations 

in temperature.  These effects did not have a significant impact on the results.  A 

comparison of the analytical model using the actual heater temperature versus the desired 

set temperature showed the minor differences in heater temperature caused little variation 

in the response.



 

IV.  Analysis 

The energy balance equation is the model for foam/PCM systems.  The difference 

between the heat into the system minus heat out is equal to the heat stored in the system.  

Heat is stored in the system in two different ways.  Some of the heat contributes to the 

softening and eventually melting of the PCM once it reaches a high enough temperature.  

The rest of the heat is stored in the foam and PCM of the TESD, increasing the 

temperature. 

meltpoutin (t) (t) (t)dTQ -Q = mc +Q
dt

    (2) 

Qin = Power into TESD 

Qout = Power out of TESD 

m = mass of TESD 

cp = specific heat capacity of TESD (J/gK) 

T = temperature within block  

t = time 

Qmelt = Heat used to soften/melt PCM 

 

Since the TESD is made up of foam and PCM, the product of mass times specific heat 

will be the sum of the product for each material. 

pcmfp p pcm pfmc = m c + m c                 (3) 

 

Qin is the rate at which heat is transferred from the copper heater block into the 

TESD.  It can be calculated by  
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h
in

h

T -T(t)Q (t) = 
R

           (4) 

with Th as the heater temperature, T(t) as the temperature within the TESD, and Rh as the 

thermal resistance through the surface in contact with the heater. 

The total thermal resistance, Rh, is the combination of the contact resistance due 

to the gap (Rg) at the joint between the heater and the TESD, plus the thermal resistance 

through the copper heater (Rc), aluminum (Ral), bonding material(Rb), and foam (Rf) to 

the location where the temperature is measured.  Each component resistance can be 

calculated by 

lR = 
kA

             (5) 

 l = thickness of material through plane perpendicular to heater surface 

 k = thermal conductivity 

 A = surface area of plane parallel to heater surface 

and                                         (6) c gh alR = R + R + R + R + Rb f

During the heating portion of the cycle, the top of the TESD is insulated.  

Therefore, Qout is assumed to be the sum of heat losses through the side surfaces of the 

TESD, Ql.  Losses are estimated in a manner similar to calculating the heat input.   

 a
l

w

T(t)-TQ (t) = 
R

                 (7) 

where Ta is the temperature of the air surrounding the TESD, and Rw is the thermal 

resistance of the TESD wall, through the insulation. 
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Substituting information from Equations (3), (4) and (7) into Equation (2) gives 

the following equation. 

ah
pcm pcmf f melt

wh
  

T -T(t) T(t)-T dT- = (m c + m c ) + Q
R R dt

        (8) 

While the TESD is heating, much of the heat input contributes to the melting of 

the PCM.  The paraffin begins softening several degrees before it reaches its melting 

point.  It becomes more and more pliable until it reaches its melting temperature and then 

becomes liquid.  As the PCM melts, the solid mass, time to complete phase change, and 

heat melting the PCM decrease.  Numerical methods are used to estimate Qmelt during the 

heating segment after initial values are established.  The subscript “n” indicates the value 

at the current time step, and the subscript “n-1” indicates the value at the previous time 

step.   Each value of Qmelt will be plugged into the solution at each time step. 

(n-1)

n
(n-1)

n

(n-1)
n (n-1) (n-1)

pc

n f
melt

pc

n f
pc

(n-1)

m
m = m - (t-t )

t

m hQ = 
t

m ht = 
Q

          (9) 

mn = mass of solid PCM 

Qmeltn = heat melting the PCM 

tpcn = time to melt remaining solid PCM 

After rearranging, the equation becomes: 

w a ww h h h melh

w pcm pcm w pcm pcmh f f h f f

+R T R T -R R QR +RdT + T=
dt R R (m c +m c ) R R (m c +m c )

t        (10) 
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The numerical estimate of Qmelt from Equation (9) for each point in time can be used to 

obtain the solution.  

   
w h

h w f f pcm pcm

-(R +R )
t

R R (m c +m c )h a w h h w melt w h h a h w melt
i

w h w h

R T +R T -R R Q R T +R T -R R QT(t)=(T - )e +
R +R R +R

          (11) 

After the PCM is completely melted, the temperature response is modeled by a similar 

exponential function shifted by the amount of time for the PCM to completely change 

phase.   

During the cooling portion of the cycle, the top surface of the TESD is exposed to 

the cooling block, and the lower surface is insulated.  The temperature response is 

estimated in a manner similar to the heating response, except with heat removal instead 

of input.  From Equation (2), Qin becomes zero because there is no heat input.  Qout 

becomes Ql, the losses, plus Qr, the heat removed by the cooling block.  Instead of having 

heat used to melt the PCM as in the heating segment, the phase change material releases 

heat while it is solidifying during the cooling segment.  

   c
r

c

T(t)-TQ (t)=
R

          (12) 

   Qr = heat removed by cooling block 

   T = temperature within block 

   Tc = temperature of the cooling block 

   Rc = resistance through foam to the cooler 

The resistance through the foam to the cooling block can be estimated by 

summing the resistance from the location under investigation through the foam, Rf, plus 
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the contact resistance through the foam-cooler interface Rg, plus the resistance from the 

surface into the coolant, Rl.   

                (13) c gfR = R + R + Rl

Combining Equations (2), (3), (7) and (12) give the following differential 

equation: 

a c
pcm pcmf f solid

w c
 (T(t)-T ) (T(t)-T ) dT- - = (m c + m c ) -Q

R R dt
  (14) 

Solving and considering initial conditions gives: 

W C

C W f f pcm pcm

-(R +R )
t

R R (m c +m c )c w c h w solid w c c a c w solid
i

w c w c

aR T +R T +R R Q R T +R T +R R QT(t)=(T - )e +
R +R R +R

      (15) 

 The equations for heating and cooling can be modified to account for the 

different thermocouple locations by calculating the resistance at each location.  The 

difference in temperature from one thermocouple location to the next is due to the 

increased thermal resistance due to the additional depth of material through which the 

heat must flow.  The value for Rf is calculated by Equation (4) with different values of “l” 

for each location. 
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V.  Results 

Validation of Theory 

Figure 8 shows the measured temperature response at Site 6 (0.25 inches into the 

TESD) of the high-density MER foam compared with the predicted response from 

Equation (8).    The analytical response predicted the actual response well, except during 

phase change.  Some of the differences between the actual and calculated temperature 

responses were due to the calculated thermal resistance.  Slight misplacement of the 

thermocouples would lead to a miscalculation in the thermal resistance from the heater 

through the TESD to the location of the thermocouple.  The values for specific heat and 

heat of fusion are estimates based on known values for similar types of paraffin wax.  

Plots for the POCO and low-density MER foam show a similar response and are located 

in Appendix A.  
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Figure 8:  Actual vs. Predicted Response—High Density MER Foam 
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Temperature Responses 

The value of infiltrating a heat sink with PCM can be seen in Figure 9.  The PCM 

increases the time it takes for the heat sink to reach maximum temperature, giving the 

system a longer time to undergo heating before heat removal is necessary.  For example, 

the unfilled TESD takes 71 seconds to reach 70ºC, while the PCM-filled TESD takes 169 

seconds.  There is a greater difference in temperatures among the different locations 

within the infiltrated foam than within the uninfiltrated foam.  This is due to the PCM 

beginning to melt and solidify at different times at different locations within the TESD.   

Site 6 remains the hottest throughout heating and cooling because it is located nearest the 

heating block, and farthest from the cooling block.  The responses for the high and low 

density MER foams similar and are shown in Appendix A. 
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Figure 9: Response of Infiltrated vs. Uninfiltrated POCO Foam 
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Figure 10 shows the temperature response of the infiltrated high-density MER 

foam at the six locations within the block.  The decreased rate of temperature rise during 

melting is evident on the plot, as is the decreased rate of temperature drop during 

solidification.  A comparison of the POCO response with the MER high-density response 

shows that POCO heats and cools faster than the MER.  The higher density of the POCO 

foam gives it a higher bulk thermal conductivity, thus a faster response. 
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Figure 10:  Temperature Response of High Density MER Foam 

 

Figure 11 more clearly shows the maximum temperature difference from the 

TESD response shown in Figure 10.  It shows the difference in temperature between the 

thermocouple location closest to the heater (site 6) and the location closest to the cooler 

(site 1).  The temperature difference decreases during the time when the PCM is melting.  
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This is due to the decreased rate of temperature increase during melting.  Since the PCM 

surrounding site 6 begins melting first, the gap in temperature decreases.  Once the PCM 

at site 6 is completely melted, the PCM at site 1 is still melting, so the temperature gap 

rises again.  Once PCM melting is complete throughout the TESD, the difference 

decreases again. 

The temperature difference increases during the phase change segment while 

cooling because the PCM nearest the cooling block solidifies first, while the PCM at site 

6 is still melted.  During solidification, heat is released.   Once solidification is complete, 

the temperature of the PCM and surrounding foam drops at a more rapid rate.  Since this 

happens at different times within the block, the temperature of the block site nearest the 

cooler drops faster than the other site. 
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Figure 11:  Max Temperature Difference—High Density MER Foam 
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The analysis of the temperature difference within the TESD shows that there is a 

significant range of temperatures from the side closest to the heater to the side closest to 

the cooler.  However, the rates of change of temperature are very similar at the various 

locations within the TESD, as seen in Figure 12.  The large negative spike occurs when 

the TESD is removed from the heater and placed in contact with the cooler. 
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Figure 12:  Temperature Rate of Change—High Density MER Foam 
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The low density MER foam had a wider range in temperatures between Site 1 and 

Site 6 than the other foams.  Because the density is lower, the foam has more voids into 

which the PCM can infiltrate.  Since the PCM has a significantly lower thermal 

conductivity than the foam, the infiltrated low density foam has a lower overall thermal 

conductivity.  The higher thermal resistance causes a significant spread in temperature at 

the various sites as shown in Figure 13. 
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 Figure 13:  Temperature Response—Low Density MER Foam 
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Figure 14 shows a comparison of the temperature response of the high density 

foam vs. the low density foam.  The rate of temperature increase with the lower density 

foam is significantly lower than the high density foam because of the higher thermal 

resistance, as described previously.  During melting, more heat is used to melt the larger 

volume of PCM in the low density foam, contributing to the slower increase in 

temperature.  Since the response for the high density foam is faster, it would be a better 

choice of foam if rapid cycling were necessary.  However, since the low density foam 

contains more PCM, it is able to absorb total heat.    
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Figure 14:  Temperature Response of High vs. Low Density Foam 
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To evaluate the effect of different contact resistances, various substances were 

placed between the heater block and the TESD.  Figure 15 shows the response of the 

infiltrated high density MER foam with the various gap fillers.  The contact resistance 

between the test article and the heater does impact the temperature response.  The 

difference between applying the thermal grease to the heater and aluminum surfaces and 

having clean surfaces is minimal, though it slightly improves the rate of heat flow into the 

TESD.  This is because the surfaces of the aluminum sheet and copper heater were 

smooth, thus reducing the contact resistance, so the grease had only a small effect. A 

thermal gap filler pad designed to reduce contact resistance by filling voids between the 

two surfaces in contact was tested.  The gap filler pad provided worse performance than a 

dry contact.  The ineffectiveness of the gap pad is also due to the smoothness of the two 

facing surfaces.  If the surfaces were rough, the gap pad may have helped improve the 

response.  A paper insulator significantly reduced the rate of heat flow.  The different 

times it takes to reach 70ºC help show the effect of the different contact resistances.  The 

TESD took 25.53 minutes to reach 70ºC with the paper insulator, 5.58 minutes with the 

gap filler, 3.23 minutes with the dry TESD, and 3.02 minutes for the thermal grease.   
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Temperature Response with Various Gap Fillers
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Figure 15:  Temperature Response with Various Gap Fillers 

 

The test article made with the high-density MER foam was repeatedly heated and 

cooled to examine its capability in cycling.  Data show that the TESD can indeed be 

cycled repeatedly while producing consistent results.  Figure 16 shows five periods of the 

temperature response, and Figure 17 shows an overlay of the rate response of five periods 

of the heating/cooling cycle.  Slight variations in the temperature response may be caused 

by manual interaction with the experiment, and also the settling of the PCM over periods 

of melting and solidifying. 

33 



 

Heating and Cooling Response over Multiple Cycles 
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Figure 16:  Cycled Response 
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Figure 17:  Rate Response over Multiple Periods 
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VI.  Conclusions and Recommendations 

Conclusions of Research 

 

 The foam infiltrated with phase change material performed as expected.  The 

analytical representation of the system shown in Equation (11) predicted the actual 

temperature response of the TESDs quite accurately. 

The thermal response reveals decreased rates of temperature increase in the 

heating portion and temperature decrease in the cooling portion during phase change.  

This is due to some of the input thermal energy being used to melt the paraffin.   

These experiments show that the carbon foam infiltrated with phase change 

material can be cycled repeatedly with consistent performance.  This result is necessary 

for this type of thermal energy storage device to be implemented on real-world systems.   

The range in temperatures at different locations throughout the block depend on 

the bulk thermal conductivity of the foam infiltrated with phase change material.  The 

less dense foam has a lower thermal conductivity, and therefore a greater spread in 

temperatures.  The less dense foam was able to slow the rate of temperature increase 

more than the more dense foam. 
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Significance of Research 

 

A thermal energy storage device made of carbon foam infiltrated with PCM can 

be used to remove heat from a source and store it until removal at a later time.  The phase 

change material selected must have a melt temperature slightly below the operating 

temperature of the system. 

Selection of the density of foam depends on the intended use.  If the system needs 

rapid heat storage and removal, a higher density foam would be the preferred choice.  If a 

large amount of heat storage is required, the low density foam would allow more 

infiltration of PCM and therefore more heat storage.  A need for rapid cycling would 

require a higher density foam. 

 

Recommendations for Action 

 

A method must be developed to completely encase the TES device in order to use 

it in real-world applications.  One possibility would be to use slightly flexible walls for 

the sides.  Another possibility would be to encapsulate the infiltrated foam while in a 

vacuum.  This method would remove the air from remaining voids so the expanding 

PCM could move into the voids as it heats. 

The test setup needs to be redesigned to use a heater with a smaller thermal mass.  

It should be able to provide variable heat inputs as desired.  This would also allow 

experiments using a constant power input.  Experiments with a constant power input 

36 



 

instead of constant temperature input would provide more useful information on the 

effectiveness of the TESD on real-world systems.   

Chromotomographical (CT) mapping of the PCM infiltration should be conducted 

to determine the movement or settling of PCM throughout the foam.  A comparison of 

before use and after one period of heating and cooling can show if the melted PCM 

settles due to gravity.  A scan after multiple cycles of heating and cooling will show the 

extent of settling over time.  A CT scan while the PCM is melted would show the extent 

of the expansion into the voids of the foam. 

Tests should be conducted in low gravity environments.  Gravity may draw the 

melted PCM toward the bottom of the TESD.  Performance may differ if the PCM is 

more evenly distributed throughout the foam volume. 

37 



 

 

Appendix A: Additional Plots 

Appendix A contains plots of the measured vs. predicted responses of the POCO 

and low density MER foams, and the comparison plots of infiltrated foam vs. 

uninfiltrated foam for the high density and low density MER foams.  

 

Measured vs. Predicted Temperature Response
Infiltrated Poco Foam

0

10

20

30

40

50

60

70

80

0 100 200 300 400 500

Time (Seconds)

Te
m

pe
ra

tu
re

 (C
el

ci
us

)

Predicted

Measured

 

38 



 

Measured vs. Predicted Temperature Response 
Infiltrated Low Density MER Foam
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Temperature Response of High Density MER 
Foam with and without PCM
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Temperature Response of Low Density MER Foam with 
and without PCM
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Appendix B: Sample Calculations 

MATHCAD Calculations for Percentage of PCM Infiltration into Foam by Volume 

MER High Density 

ρpcm .9
gm

cm3
:=  

mpcm 20.76 9.45−( )gm:=  
Vfoam 1.5in .879⋅ in .873⋅ in:=  

Vpcm
mpcm
ρpcm

:=  

%infiltration
Vpcm
Vfoam

100⋅:=  

%infiltration 66.623=  

MER Low Density 

ρpcm .9
gm

cm3
:=  

mpcm 16.35 3.44−( )gm:=  
Vfoam 1.5in .879⋅ in .873⋅ in:=  

Vpcm
mpcm
ρpcm

:=  

%infiltration
Vpcm
Vfoam

100⋅:=  

%infiltration 76.048=  

Pocofoam  

ρpcm .9
gm

cm3
:=  

mpcm 21.40 10.40−( ):= gm 
Vfoam 1.5in .879⋅ in .873⋅ in:=  

Vpcm
mpcm
ρpcm

:=  

%infiltration
Vpcm
Vfoam

100⋅:=  

41  %infiltration 64.797=



 

MATHCAD Calculations for Thermal Resistance 

Resistance from Heater to Site 6 of High Density MER TESD 

Rcopper .0014
K
W

:=  

Rfoam
.25in

80.2
W

m K⋅
⎛⎜
⎝

⎞⎟
⎠

.879in .876⋅ in( )⋅

:=  
Rfoam 0.159

K
W

=  

Ral
.0028in

237
W

m K⋅
⎛⎜
⎝

⎞⎟
⎠

.879in .876⋅ in( )⋅

:=  
Ral 6.041 10 4−

×
K
W

=  

Rbond
.058in

12
W

m K⋅
⎛⎜
⎝

⎞⎟
⎠

.879in .876⋅ in( )⋅

:=  
Rbond 0.247

K
W

=  

Rgrease .03m
K
W
⋅

.008in
.879in .876⋅ in
⋅:=  Rgrease 0.012

K
W

=  

Rgap 0.8
K
W

:=  

Rh Ral Rbond+ Rgrease+ Rcopper+ Rfoam+ Rgap+:=

Rh 1.221
K
W

=  
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Appendix C: Detailed Procedures 

 

Detailed Procedure for TESD Construction 

 

Each test article was constructed in the following way.  The foam was cut to size 

using a water-cooled diamond saw.  The samples were rinsed to remove any graphite dust 

and then allowed to dry in a 200ºF oven for 5 hours and at room temperature overnight.   

 After the foam was completely dry, the thin aluminum sheet was bonded to the 

foam.  First, the aluminum was cut to size using scissors.  It was inspected to ensure no 

creases or bumps. The surface of the aluminum was prepped by rubbing sandpaper on the 

face to be bonded.  Then both the aluminum and foam bonding surfaces were cleaned 

with acetone. Arctic Silver epoxy was used to bond the aluminum sheet to the foam.  The 

epoxy was spread on the surface of the foam and massaged into the voids with the 

spatula.  When the entire area was covered in epoxy, the excess was scraped away.  The 

epoxy was also spread directly on to the aluminum sheet in order to ensure a good bond 

on both surfaces.  The epoxy was cured at room temperature, 23ºC.     

After bonding was complete, the foam was then infiltrated with phase change 

material.  The paraffin was melted in a glass beaker over a hot plate.  The foam was 

placed in the beaker with the wax, and the beaker was place in a vacuum oven preheated 

to 85ºC.  A vacuum was drawn in the oven and held for 75 minutes, which is the 

experimentally determine time when the air bubbles exiting the foam became scarce.  The 

beaker was then removed from the oven.  A precut piece of acrylic tube was slipped over 
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the foam still in the beaker.  The foam was removed from the beaker and allowed to cool 

at room temperature.  When the paraffin became solid, but while it was still soft, the 

acrylic case was removed.  Excess wax was removed from the aluminum sheet.   

The holes for the thermocouples were drilled with a micro bit.  A channel along 

the side of the foam was cut from each hole to the top of the foam for the thermocouple 

wire to lie in.  This was necessary to allow the snug acrylic tube to slip back over the 

foam without destroying the wire.  The thermocouples were then inserted into the holes 

and laid into the channels.    

The acrylic case was gently slipped back over the foam, ensuring that none of the 

thermocouple wires were disrupted.  The lower edge of the case and the exposed 

aluminum were thoroughly cleaned with mineral spirits.  The edge was sealed with 

Plastic Fusion® plastic epoxy.  The epoxy cured at room temperature for 24 hours.  The 

top of the test articles were left open to allow for expansion of the PCM 
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Detailed Experiment Procedure 

 

1. Set copper heater block to 75ºC and cooler to 15ºC via computer. 

2. Apply thermal compound to surface of heater block and TESD. 
3. Once heater reaches temperature, place TESD on heater. 
4. Immediately place insulating block on top. 

5. Lower pneumatic press into place. 
6. Once TESD remains on the heater for desired time, raise the press. 
7. Immediately move insulating block underneath TESD. 
8. Lower the cooling block onto test article using the pneumatic press. 
9. Allow the TESD to cool to desired temperature and repeat if cycling is desired.
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